

INTRODUCTION

The networked LiBAL n-BMS has been developed around the new communication standard isoSPI, which essentially does not require programmable processors on CMU's (Slave PCB) in the BMS network. In any application, this is a huge advantage, because it does not require software on the CMU and therefore greatly simplifies in-field maintenance. In addition, the isoSPI communication network ensure the most cost efficient communication circuit in the market.

The n-BMS is developed to meet all relevant automotive requirements. ISO 26262 compliant design with key components such as Processor, ASIC and PSU carefully selected to meet the functional safety at ASIL C level.

The n-BMS can be configured with up to 32 CMU's. Each CMU can monitor up to 12 cells in series and thus the n-BMS can monitor in total up to 384 cells in series.

The n-BMS can measure temperature with an accuracy up to +/-1 C and meassure cell voltages with an accuracy of +/-1,5 mV, throughout the entire temperature range (-40 to +85 °C).

The n-BMS Creator™ software, enable the battery designer to create a unique Battery design based on the n-BMS hardware. The n-BMS Creator™ software facilitates a unique safety strategy, battery performance optimisation, charge time reduction as well as ensuring the best possible battery life.

SAFETY

ISO 26262 rated components and design Self-test and redundancy in safety critical measurement circuits

Open circuit detection

BATTERY LIFE

High frequency sampling of current (100 mS) allows optimal detection of pulses

Powerful and intelligent dissipative balancing at 200mA per cell -40° to +85°C operational range

PERFORMANCE

 $\pm 1.5~\text{mV}$ accuracy in the complete temperature range (cell voltage)

Optimized low power consumption mode

±1 °C accuracy in temperature measurement

Advanced SOC algorithm with OCV compensation

Advanced SOH algorithm

Advanced SOP Algorithm

USABILITY

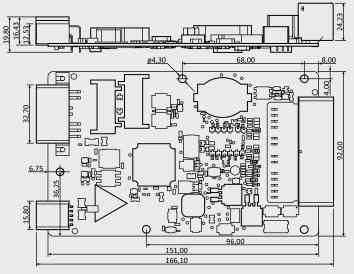
RTC + logging of events, errors and warnings

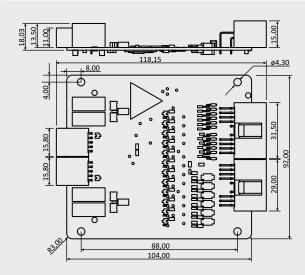
BMS Creator PC tool for easy configuration

Optional current sensing (Hall effect or Shunt)

CAN UDS tool

Applications





LiTHIUM BALANCE

ATTERY MANAGEMENT SYSTEMS

n-BMS MCU n-BMS CMU Dimensions in MM

Master Control Unit (MCU)

Power supply

Number of CMU's supported

Number of cells in series for total system

Range of high voltage measurement

Accuracy of high voltage measurement

Range of current measurement input Shunt

Accuracy of current measurement input Shunt

Range of current measurement input (Hall effect sensor)

Accuracy of current measurement input (Hall effect sensor)

Accuracy of temperature (NTC)

Ground fault detection (leakage) levels

Standby Consumption

Active Consumption

Communication interface, master-slave

Supported CAN communication type

Supported CAN speeds

Number of CAN ports

External GPIOs

Charger control interfaces

Cell Monitoring Unit (CMU)

Number of cells per unit

Detectable cell voltage

Cell balancing topology

Cell balancing current

Cell voltage typical sampling time

Accuracy of single cell voltage

Range of Temperature measurements

Accuracy of cell temperature (NTC)

Communication interface

Standby Consumption

Active Consumption

Patents

SPECIFICATIONS

6-35 V

1-32

384

0 - 1000 VDC

±1 VDC

±150 mV

±1.0 mV -40 – 85 °C

0.0 - 5.0 V, 0.0 - 2.5 V current in, 2.5 V - 5.0 V current out

±1.5 mV -40 - 85 °C

±1 °C -40 - 85 °C

 $250/500/1000~\Omega/V$ Between GND and HV+/-

<8,5 mW at 12V supply

<3,5 W at 12 V supply

isoSPI

CAN 2.0A/B 11 bit and 29 bit IDs

125, 250, 500, 1k kbit/sec

2, one isolated CAN, one non-isolated CAN.

16 (Active Low)

CAN

3-12 Cells (minimum 11 V, to power the CMU)

0 - 5 VDC

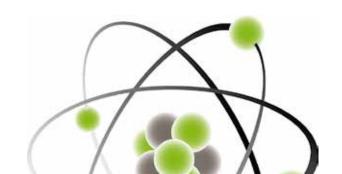
Dissipative

200 mA, at cell voltage 4.2 V

100 ms

 ± 1.5 mV from -40 to +85 °C

-40 to +125 °C


 ± 1 °C -40 - 85 °C

isoSPI (Max. 5 m shielded cable between boards)

<269µW (with 12 cells @ 3,2 V)

<326 mW (with 12 cells @ 3,2 V)

ZT 200780048774,EP 0781788.6,US 8.350.529

LITHIUM BALANCE

BATTERY MANAGEMENT SYSTEMS

www.lithiumbalance.com contact@lithiumbalance.com Tel: +45 5851 5104 LiTHIUM BALANCE A/S Hassellunden 13 2765 Smørum, Denmark